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LETTER TO THE EDITOR 

Renormalisation of the ‘true’ self -avoiding walk 

S P Obukhovt and L Pelitit 
+ L D Landau Institute of Theoretical Physics, Academy of Sciences of USSR 
$ Istituto di Fisica ‘G Marconi’, Piazzale Aldo Moro 2, 1-00185 Roma, Italy and GNSM- 
CNR, Unita di Roma, Italy 

Received 21 December 1982 

Abstract. It is shown that the renormalisation of the ‘true’ self-avoiding walk of Amit et 
al at its upper critical dimensionality two involves at least two (possibly three) coupling 
constants. Fixed points to first order in E = 2 - 0  are identified and the asymptotic 
behaviour at D = 2 is discussed. 

Amit et a1 (1982, to be referred to as I) have recently observed that the common use 
of the expression ‘self-avoiding walk’ as synonymous with the problem of polymer 
statistics in a good solvent is misleading. The statistical problem of a traveller who 
steps randomly, but tries to avoid places he has already visited, appears as a natural 
interpretation of the expression ‘self-avoiding walk’ (SAW): it was shown in I that this 
problem (called the ‘true’ SAW) belongs to a different universality class from that of 
the polymer problem (for which see, e.g., de Gennes 1979), and in particular that its 
upper critical dimensionality-above which it essentially behaves like an ordinary, 
not self-avoiding, walk-is two, whereas it is four for the polymer problem. 

A heuristic renormalisation scheme was set up in I and led to the prediction that 
the average square end-to-end distance (RL) for a ‘true’ SAW in two dimensions 
behaves asymptotically for N -* 03 in the following way: 

(RL)xNlln N I ‘  (1) 

where the exponent 5 = 0.4. This prediction was checked against computer simula- 
tions: the results were acceptable when the self-avoidance parameter g was rather 
small; it failed, however, in the limit g +CO where 5 appeared to approach one. 

It must be remarked that the renormalisation procedure of I was heuristic in the 
sense that it was assumed that the renormalisation of the single coupling constant g 
and of the diffusion parameter 9 of the random walk was sufficient to remove all 
infinities in the perturbation theory as the dimensionality D of the space approached 
the upper critical dimension D,  = 2. 

We wish to point out in this letter that this assumption is incorrect and that the 
renormalisation of the ‘true’ SAW involves at least two (possibly three) coupling 
constants. As a consequence the prediction 5 = 0.4 in (1) is incorrect. The asymptotic 
behaviour depends on some details of the model. If only two coupling constants 
(gl, gz) are involved and the starting point of the renormalisation group is chosen to 
be (gl, 0) with gl >O,  then the asymptotic behaviour corresponds to l =  1 and is 
reached the faster, the larger the initial value of gl (we are neglecting the effects of 
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terms of higher order in the coupling constants). This can explain the results of the 
simulations of I in the g + 00 limit. One obtains on the other hand that the present 
theory agrees quite well with the data of I for smaller values of g. We have so far 
been unable to rule out the possible appearance of a third coupling constant g3 in the 
renormalisation of the theory. We remark, however, that although its presence will 
eventually modify the asymptotic behaviour, its effects are likely to be very small for 
the path lengths investigated in I. We report here only the results of a one-loop 
calculation. Fuller results and proofs will be reported elsewhere. 

The 'true' SAW in a D-dimensional continuum is defined as in I by the equations 

a ( t ) l d t  = - g i V p ( R ( t ) ,  t ) + ~ ( t ) ,  (2) 

a p ( r ,  t ) /a t  = S(r -R( t ) ) ,  (3) 

(9 ( t )>  = 0, (77i ( f )77j ( t ' ) )  = 298i$(t - t ' ) .  (4) 

where 1 ( t )  is a Gaussian noise which satisfies 

9 > 0 is the diffusion and g l  > 0 is the coupling constant of the process. The perturba- 
tion procedure outlined in I can be then reproduced by a diagrammatic technique. 

Let us consider the Laplace transform with respect to time and the Fourier 
transform with respect to space of the end-to-end distance probability distribution 
function (denoted A(@, p )  in I): 

m 

G(p,  p )  = dt  e-wt I dDr eiP"(S(r -R(t))) .  ( 5 )  
0 

The quantity G(p,  p )  can be then computed by the following rules. 
(i) For n-loop order, draw all diagrams containing one directed continuous line 

and up to n broken lines joining points on the continuous one. 
(ii) Associate a wavenumber p to each segment of the continuous line and a 

wavenumber q to each broken line, satisfying conservation at each vertex; the 
wavenumber q is assumed to run opposite to the direction of the continuous line 
(figure 1). 

Figure 1. The basic vertex. The point A is assumed to come eariier than B along the 
directed line. 

(iii) Associate a factor ( p  +9p2)- '  to each continuous segment with wavenumber 

(iv) Associate a factor g l ( p l  -4 )  to each dotted line with wavenumber q, where p1 

(v) Integrate over all free wavenumbers, dividing by ( 2 ~ ) ~  for each integration. 
It is possible to justify these diagrammatic rules by means of a Martin et al (1973) 

field theoretical approach: the derivation will be reported elsewhere. It is, however, 
easy to check that it reproduces the results of I. 

P. 

is the wavenumber of the latest outgoing continuous segment. 
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The building blocks of the diagram technique are: 
(a) the self-energy E; it is obvious that it is proportional to its wavenumber 

(b) the dressed vertex r (figure 2). It is obviously proportional to pl; hence it 
argument p ,  hence to p 2 ;  

may be written 

U P ,  4 , P l )  = ( ~ ~ . 4 ) r ~ + ( p ~ . ( ~ ~ + 4 ) ) r ~ + ( ~ ~ ~ ~ ) r ~ .  (6 )  

P + 4  

P Jxp'+q PI 

Figure 2. The dressed vertex r. The line joining A and B is assumed to come earlier 
than that joining C and D along the directed line. 

Power counting immediately shows that aZ/ap2 and rl, T2, r3 are dimensionless at 
D = 2. The upper critical dimension is therefore 2, where the theory can be renor- 
malised by introducing: 

(a) a diffusion constant renormalisation factor Z via 

9 = Z a R ;  (7) 

(we shall set gR = 1 for convenience) and 
(b) three renormalised coupling constants u l K E ,  U Z K ~ ,  U ~ K '  (where K is the renor- 

malisation wavenumber), which take care of the primitive divergences of rl, r2, r3 
respectively. 

The results of a one-loop calculation at D = 2 via dimensional regularisation and 
minimal subtraction (cf Amit 1979, §S 9-10) are 

( 1 0 )  

( 1 1 )  

2 2  
KDg2 = KE[U2+E-1(-U1 - U 2 + 3 U 1 U z + U 1 U 3 - 3 U 2 U 3 ) ] ,  

KDg3 = K E  [ U 3  + E -I(  - $Ut + 2 U  1 U 3  - U Z U ~ ) ] .  

KO indicates as usual the factor 21-D7r-D'2/r(D/2). Remark that if g3 = 0, then u3 = 0, 
at least to one-loop order. It is uncertain whether this property remains at higher 
orders. If we assume this to be the case, we obtain the following flow equations for 
u1, u2 in the u3 = 0 plane: 

(12) 

(13) 
where =In ( K ' / K )  is the logarithm of the scale parameter. Equations (12), (13) have 
as a stable fixed point for E > 0: u1 = u2 = E, with a corresponding critical exponent: 

( 1 4 )  

5 2  1 2  

2 2  

dul/dT = W1= - E U ~  +TU 1 + Z U Z - ~ U I U Z ,  

duz/dT = W2 = - - E u ~ -  U ~ - u z +  3 ~ 1 ~ 2 ,  

7 = wi(a In z / a u i )  = E + o(E'). 
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The exponent 77 is related to the asymptotic behaviour of (R2( t ) )  as a function of the 
length t of the walk: 

(R2(t))at'+". (15) 

The prediction (14) disagrees therefore with the interesting conjecture of Pietronero 
(1982), which gives for 0 s E < 1 : 

77 =E/ ( l -&) .  (16) 

If g3 # 0 the situation is more complicated. There are six fixed points of order E (the 
one given above is double). If u3 > 0 there is runaway, if u3 < 0 the stable fixed point 
appears to be u1 = u2 = 0, u3 = -2&/5, to which corresponds 77 = 2 ~ / 5 .  This fixed point 
is probably relevant for some problems of the random walk in a random environment. 

At E = 2 - D  = 0 we may remark the following: starting from u1 = U:, u2 = u3 = 0, 
the flow equations yield a trajectory which tends to lie along the u1 = u2 line. The 
analysis of Amit (1979, §$9-6), then allows one to compute the asymptotic value of 
5 (equation (l)), which equals one. This appears to be in contradiction with the results 
of the simulations of I. If, however, we consider the behaviour of the quantity 

Y = ( R ; ) / N  (17) 

as a function of the number of steps N, we see that the results of the present calculation 
are compatible with the numerical results of I. We have in fact 

where (u1(7), u 2 ( 7 ) )  is the solution of ( E ) ,  (13) which satisfies (u l (0) ,  u ~ ( 0 ) )  = (U?, 0), 
and T~ = - In ( (R $ ) / a  '), where a is an elementary length which plays the role of a 
lattice constant. We have plotted in figure 3 Y as a function of In2 N as computed 
from the present theory, against the data of I. The coupling constant gl = U? = 1. The 
non-universal quantity a is chosen in such a way that the curve passes through the 
data point at In2 N = 8.5. The broken line is computed from the theory of I. 

Y 

I I-.----, I I 1 .I& 
3 5 I 9 11 13 

In, N 

Figure 3. Y (equation (17)) against In2 N ( N  is the number of steps) for gl = 1 .  The data 
are from I. Full line: present theory. Broken line: theory of I. 
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When U: grows larger, higher-order terms will come into play. It is easy to see, 
however, that the solutions of the flow equations (12), (13) for E = 0 satisfy the scaling 
relation, valid for all A > 0: 

(19) 
The ratio u2/u1 and the exponent [ will therefore settle to their asymptotic value of 
one with values of 171 which are inversely proportional to U?. This may explain the 
behaviour of the simulation data of I for the g + 00 limit, which were more compatible 
with [ = 1.0 than with [ = 0.4. 

We have shown in conclusion that a diagrammatic expansion of the ‘true’ SAW 
can be renormalised by means of familiar techniques around its upper critical 
dimensionality two. 

(u1(7), u 2 ( 7 ) )  = A ( U l ( A r ) ,  u 2 ( A 7 ) ) .  

This work was started when the authors were guests of the Solid State Theory 
Department, Central Research Institute of Physics, Budapest (Hungary). They warmly 
thank this Institute for hospitality and Dr G Forgacs for stimulating conversations. 
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